![[spherical_coordinates.png]]
Spherical coordinates in the physics convention $(r, \theta, \phi)$ are described via the figure above. The angle $\phi$ is the azimuthal angle in the $(x, y)$ plane and the angle $\theta$ is the polar angle with respect to the $z$-axis. The radius is denoted by $r$. We therefore have for each point $(x, y, z)\in\mathbb{R}$ that
$
\begin{bmatrix}x\\ y\\ z\end{bmatrix} = \begin{bmatrix}r\sin\theta\cos\phi\\ r\sin\theta\sin\phi\\ r\cos\theta\end{bmatrix}.
$
The Jacobian of this transformation is given by
$
J:=\frac{\partial(x, y, z)}{\partial (r, \theta, \phi)} = \begin{bmatrix}\sin\theta\cos\phi & r\cos\theta\cos\phi & -r\sin\theta\sin\phi\\
\sin\theta\sin\phi & r\cos\theta\sin\phi & r\sin\theta\cos\phi\\
\cos\theta & -r\sin\theta & 0
\end{bmatrix}.
$
We hence have that
$
\begin{bmatrix}
\frac{\partial }{\partial r}\\
\frac{\partial}{\partial \theta}\\
\frac{\partial}{\partial\phi}
\end{bmatrix}
= \begin{bmatrix}\sin\theta\cos\phi & r\cos\theta\cos\phi & -r\sin\theta\sin\phi\\
\sin\theta\sin\phi & r\cos\theta\sin\phi & r\sin\theta\cos\phi\\
\cos\theta & -r\sin\theta & 0
\end{bmatrix}
\begin{bmatrix}
\frac{\partial}{\partial x}\\
\frac{\partial}{\partial y}\\
\frac{\partial}{\partial z}
\end{bmatrix}.
$
The inverse transformation is given by
$
\begin{bmatrix}
\frac{\partial}{\partial x}\\
\frac{\partial}{\partial y}\\
\frac{\partial}{\partial z}
\end{bmatrix} =
\begin{bmatrix}
\sin\theta\cos\phi & \sin\theta\sin\phi & \cos\theta\\
r^{-1}\cos\theta\cos\phi & r^{-1}\cos\theta\sin\phi & -r^{-1}\sin\theta\\
-r^{-1}\frac{\sin\phi}{\sin\theta} & r^{-1}\frac{\cos\phi}{\sin\theta} & 0\\
\end{bmatrix}
\begin{bmatrix}
\frac{\partial }{\partial r}\\
\frac{\partial}{\partial \theta}\\
\frac{\partial}{\partial\phi}
\end{bmatrix}.
$
Furthermore, we have that $\det J = r^2\sin\theta$.
For the Laplacian of a function $u$ we obtain the formula
$
\nabla^2 u = \frac{1}{r^2}\frac{\partial}{\partial r}\left(r^2\frac{\partial u}{\partial r}\right) + \frac{1}{r^2\sin\theta}\frac{\partial}{\partial\theta}\left(\sin\theta \frac{\partial u}{\partial\theta}\right) + \frac{1}{r^2\sin^2\theta}\frac{\partial^2 u}{\partial\phi^2}.
$
## References
- [Spherical Coordinate System on Wikipedia](https://en.wikipedia.org/wiki/Spherical_coordinate_system)