For the following we assume that $r = |x-y|$ with $x,y\in\mathbb{R}^3$.
We have the following derivative
$
\frac{\partial r}{\partial x} = \frac{\partial}{\partial x}\left(\sum_{j=1}^n (x_j - y_j)^2)\right)^{1/2} = \frac{1}{r}(x-y)
$
## Laplace Green's function
We have $g(x, y) = \frac{1}{4\pi r}$.
For the derivative we obtain
$
\begin{align}
\frac{\partial g}{\partial x}(x, y) &= \frac{1}{4\pi r^3}(y-x)\nonumber\\
\frac{\partial g}{\partial y}(x, y) &= \frac{1}{4\pi r^3}(x-y)\nonumber.
\end{align}
$
## Helmholtz Green's function
We have $g(x, y) = \frac{e^{ikr}}{4\pi r}$.
For the derivative we obtain
$
\frac{\partial}{\partial r}\left(\frac{e^{ikr}}{4\pi r}\right) = \frac{e^{ikr}}{r^2}\left(ikr -1\right).
$
Hence,
$
\begin{align}
\frac{\partial g}{\partial x}(x, y) &= \frac{e^{ikr}}{4\pi r^3}(1-ikr)(y-x)\nonumber\\
\frac{\partial g}{\partial y}(x, y) &= \frac{e^{ikr}}{4\pi r^3}(1-ikr)(x-y)\nonumber.
\end{align}
$
## Modified Helmholtz Green's function
We have $g(x, y) = \frac{e^{-\omega r}}{4\pi r}$.
For the derivative we obtain
$
\frac{\partial}{\partial r}\left(\frac{e^{-\omega r}}{4\pi r}\right) = -\frac{e^{-\omega r}}{r^2}\left(\omega r +1\right).
$
$
\begin{align}
\frac{\partial g}{\partial x}(x, y) &= \frac{e^{-\omega r}}{4\pi r^3}(1+\omega r)(y-x)\nonumber\\
\frac{\partial g}{\partial y}(x, y) &= \frac{e^{-\omega r}}{4\pi r^3}(1+\omega r)(x-y)\nonumber.
\end{align}
$